Row Format

Oracle stores each row of a database table containing data for less than 256 columns as one or more row pieces. If an entire row can be inserted into a single data block, then Oracle stores the row as one row piece. However, if all of a row’s data cannot be inserted into a single data block or if an update to an existing row causes the row to outgrow its data block, then Oracle stores the row using multiple row pieces. A data block usually contains only one row piece for each row. When Oracle must store a row in more than one row piece, it is chained across multiple blocks.

When a table has more than 255 columns, rows that have data after the 255th column are likely to be chained within the same block. This is called intra-block chaining. A chained row’s pieces are chained together using the rowids of the pieces. With intra-block chaining, users receive all the data in the same block. If the row fits in the block, users do not see an effect in I/O performance, because no extra I/O operation is required to retrieve the rest of the row.

Each row piece, chained or unchained, contains a row header and data for all or some of the row’s columns. Individual columns can also span row pieces and, consequently, data blocks. Figure 5-3 shows the format of a row piece:

Figure 5-3 The Format of a Row Piece

Description of Figure 5-3 follows
Description of "Figure 5-3 The Format of a Row Piece"

The row header precedes the data and contains information about:

  • Row pieces

  • Chaining (for chained row pieces only)

  • Columns in the row piece

  • Cluster keys (for clustered data only)

A row fully contained in one block has at least 3 bytes of row header. After the row header information, each row contains column length and data. The column length requires 1 byte for columns that store 250 bytes or less, or 3 bytes for columns that store more than 250 bytes, and precedes the column data. Space required for column data depends on the datatype. If the datatype of a column is variable length, then the space required to hold a value can grow and shrink with updates to the data.

To conserve space, a null in a column only stores the column length (zero). Oracle does not store data for the null column. Also, for trailing null columns, Oracle does not even store the column length.


Each row also uses 2 bytes in the data block header’s row directory.

Clustered rows contain the same information as nonclustered rows. In addition, they contain information that references the cluster key to which they belong.

See Also:

Rowids of Row Pieces

The rowid identifies each row piece by its location or address. After they are assigned, a given row piece retains its rowid until the corresponding row is deleted or exported and imported using Oracle utilities. For clustered tables, if the cluster key values of a row change, then the row keeps the same rowid but also gets an additional pointer rowid for the new values.


Row Migration and Chaining

Row Migration

If PCTFREE is set to a low value, there may be insufficient space in a block to accommodate a row that grows as a result of an update. When this happens, the Oracle server will move the entire row to a new block and leave a pointer from the original block to the new location. This process is referred to as row migration. When a row is migrated, input/output (I/O) performance associated with this row decreases because the Oracle server must scan two data blocks to retrieve the data.

Row Chaining

Row chaining occurs when a row is too large to fit into any block. This might occur when the row contains columns that are very long. In this case, the Oracle server divides the row into smaller chunks called row pieces. Each row piece is stored in a block along with the necessary pointers to retrieve and assemble the entire row. Row chaining can be minimized by choosing a higher block size or by splitting the table into multiple tables with fewer columns, if possible.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: